Optical cryostats

The optical cryostats from Montana Instruments are using a closed helium cycle and are perfectly suited for optical experiments thanks to their high mechanical stability. The cryostats provide a temperature range 2.3 K to 350 K at a vibration level of just five nm. A fully automated operation eliminates the costly and time-consuming risk of cryogenic pitfalls. Closed-cycle means no helium is consumed, so your operational costs are minimal. After inserting the sample and entering a set point temperature, the Cryostation will reach and maintain the temperature with stability unmatched by any other commercial cryogenic instrument. Very good optical access with five (or more) viewports and as much as 29 electrical feedthroughs in the standard configuration allow both optical and electrical measurements.

The Cryostation cryostat, Monatana Instruments' optical cryostat with closed helium cycle, is perfectly suited for optical experiments thanks to its high mechanical stability. The cryostat provides a temperature range of 3.2–350 K at a vibration level of just five nm. A fully automated operation eliminates the costly and time-consuming risk of cryogenic pitfalls. Closed-cycle means no helium is consumed, so your operational costs are minimal. After inserting the sample and entering a setpoint temperature, the Cryostation will reach and maintain the temperature with stability unmatched by any other commercial cryogenic instrument. Up to five viewports and as much as 29 electrical feedthroughs in the standard configuration allow both optical and electrical measurements.

More

The Fusion F2 is the “fusion” of the Cryostation C2 and the Nanoscale Workstation NW2. This closed-cycle cryostat has the very high temperature and vibration stability of the Cryostation C2 and a sample space in between the Cryostation C2 and the Nanoscale Workstation NW2. With an inside radiation shield diameter of 95 mm, the Fusion provides the perfect intermediate sample chamber size for increased experimental flexibility without sacrificing base temperature. Additionally the Fusion F2 provides 25 extra electrical feedthroughs directly to the sample platform circuit board. These feedthroughs require no further thermal lagging and provide routes for DC measurements and additional thermometers.

More

The Nanoscale Workstation provides an entire cooled breadboard platform for configuring your experiment.

The cooled breadboard offers the freedom to integrate a sample with multiple probes, nanopositioners and free-space optics right onto the cold platform. In this way, the cold platform simply becomes an extension of the optical table.

Use any of the seven radial and one overhead port for optical access to the experiment. Overhead optical access can be configurated for low working distance imaging. The versatile and spacious design allows for multiple RF and DC electrical, fiber optic and gas tube feedthroughs to be incorporated and thermally lagged for ease of use and high performance.

More

If you are looking for an optical cryostat with closed helium cycle that provides a mechanically highly stable sample stage, the HILA (High Inertia Low Acceleration) workstation is the optimal solution. The system features advanced vibration isolation consisting of a passively dampened platform with low natural frequency combined with a mass compensation technology for ultra sensitive measurements. The kinetic energy within the sample space is minimized.

More

Follow us: twitter linkedin
European offices
© LOT Quantum Design 2016